Center for Integrative Research on Cognition, Learning, and Instruction (CIRCLE)

Current Projects

Mark McDaniel and Gina Frey
Washington University in Saint Louis
CIRCLE Mission

- Provide a **bridge** between WU faculty and researchers in cognitive and learning sciences to improve student learning.
 - Foster implementation of **innovations** in teaching
 - Support **research** to evaluate the effectiveness of these innovations
 - Disseminate the results of these **classroom-based** evaluations using experimental design methods
Bridging The Gap

Faculty in the Discipline

Knowledge about how people learn

Specific learning & teaching challenges in the classroom

Faculty Performing Research on Learning

Collaboration to Improve Student Learning
Types of CIRCLE Projects

I. Active, Inquiry Learning, Problem-Based Approaches to Instruction

II. Applying Cognitive Science (Memory Principles) to Improve Student Learning

III. Teacher Development
A. Identifying College Freshmen At-Risk For Migrating Out of Stem and How to Increase Retention

- Funded by Luce Foundation
- Consortium of 7 institutions
 - Private and public, large and small, research-intensive and PUI, different geographical regions
- Study focuses on General Chemistry
 - First university-level science course in most universities
A. Identifying College Freshmen At-Risk For Migrating Out of Stem and How to Increase Retention

- Objective is to determine a student’s learning approach
 - Using a Web-based learning-task program, which is independent of subject knowledge – developed at WU
- Compare a student’s learning approach to course performance and see if a correlation exists
Types of Student Learning Approaches

Algorithmic (Exemplar)
- Memorizes information
- Follows procedures

Conceptual-based (Rule-based)
- Connects concepts to problem solving
- Integrates ideas together
Learning-Approach Study in General Chemistry

- Does the Web-based learning-task program work for a wide range of students?
 - Preliminary data from WU say “it works for psychology and general chemistry students”

- Does learning tendency relate to General Chemistry Performances?
 - Preliminary data from WU say “yes”

- Do active learning approaches benefit algorithmic learners?
B. Active-Learning in Physics

- Hestenes, Physics professor at Arizona State, suspected that students in general physics were memorizing the formulas and not understanding the concepts
- Hestenes and colleagues developed the force-concept inventory in the early 1990s
 - Inventory tests conceptual understanding, not mathematical ability
- Inventory has been widely used and is highly validated.
B. Assessment of Active-Learning in Physics (R. Trousil, M. Hynes)

- Initial funding by HHMI
- Introductory Physics sections
 - Standard lecture
 - Active problem solving, contextualized in everyday problems
- Administer Physics Concept Inventory (standardized exam) at beginning and end of semester
- Evaluate Problem sets with near and far transfer
C. BioMedical Engineering Curriculum-Redesign Project
K. Thoroughman (Biomedical Eng.), B. Lutes (The Teaching Center)

- NSF proposal being submitted in January
- Engineering Virtual Studio in conjunction with Foundational Courses
 - Objective of studio is to provide students with enrichment material and exercises to see applications of concepts being studied in foundational courses
- CIRCLE’s Role
 - Assist in designing assessment study for EVS and analysis of the educational impact
 - Assist in reporting the findings in the educational literature
D. Process Oriented Guided Inquiry Learning (POGIL)

- IES funding pending
- Chemistry and Biology classes in 3 high schools—total of 20 classrooms
- Year 1: assess instructors’ effectiveness by student improvement over the year
- Years 2 and 3: half instructors teach using POGIL materials; half with standard methods (with technology enrichment)
- Assessments: **Achievement**—exams; state standardized tests

 Scientific Reasoning

 Attitudes
Types of CIRCLE Projects

I. Active, Inquiry Learning, Problem-Based Approaches to Instruction

II. Applying Cognitive Science (Memory Principles) to Improve Student Learning

III. Teacher Development
A. Business School
(Durai Sundaramoorthi, Mike Cahill, Jeri Little)

- Introductory Business Statistics (spring, 2012)
- Homework problem sets are grouped (massed) by problem type (compute independent sample t-tests; compute correlated sample t-tests)
- **Interleave problems** for half the course vs. standard practice for half the course
- Counterbalance halves across two sections
- In addition to course exams, administer a long-term retention test 3 months after course
B. Occupational therapy/med school
(Susan Fitzpatrick, Jeri Little)

- Introductory **Neuroscience** (foundations course in OT)
 - Challenge is that the course is terminology rich—lots of new terminology to learn
 - Many students do not know the terms even by mid-semester and do not seem to have familiarity with them in their subsequent clinically oriented courses
 - Likely interferes with comprehension and learning, especially during lectures
- Frequent on-line quizzing of terminology initially to provide fluency in retrieval of meaning (Blackboard)
- End of semester: Test for terms targeted and not targeted in quizzing;
- End of summer: Test for long-term retention of terms
C. Immunology
(Dan Hanson)

- Project under Discussion
- Challenge is that the course is terminology rich—lots of new terminology to learn
 - Likely interferes with comprehension and learning, especially during lectures
- Frequent on-line quizzing of terminology initially to provide fluency in retrieval of meaning
Types of CIRCLE Projects

I. Active, Inquiry Learning, Problem-Based Approaches to Instruction

II. Applying Cognitive Science (Memory Principles) to Improve Student Learning

III. Teacher Development
A. Resident Teaching in OB/GYN
(Tammy Sonn, WU medical school)

- Resident-teacher ratings in OB/GYN clinical rotations are among the worst in medical schools nation-wide
- Develop and implement residents-as-teachers professional-development program
- Designing a study which includes
 - Pre-test on a simulated teaching activity
 - Series of workshops on teaching
 - Post-test on a simulated teaching activity
 - Analyze student evaluations
NSF funding submitted in January (Part of consortium)

WUSTAR Projects

- Graduate Students conducting “teaching as research” projects

Pilot program spring 2012

- 4 WUSTAR Projects – biology

Working with The Teaching Center

- Refine pedagogical innovation and develop evaluation study
- Weekly group meetings with The Teaching Center to discuss projects
- The Teaching Center to evaluate WUSTAR program

Working with CIRCLE to assist graduate students in learning to evaluate individual WUSTAR projects
WU Conference: Integrating Cognitive Science with Innovative Teaching in STEM Disciplines

- Being held September 27-28, 2012 at Washington University in St. Louis
- Funded by the James S. McDonnell Foundation
- Bringing together experts in two adjoining fields:
 - STEM discipline experts (biology, chemistry, engineering, and physics)
 - Developing innovations in fostering student learning in STEM
 - Conducting classroom evaluations of these innovations in experiments and quasi-experiments
 - Cognitive-science experts
 - Conducting research in the laboratory with authentic educational materials
 - Conducting research in classroom contexts
 - Seeking to derive general principles of effective instruction and student learning.